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a candidate for the Klauder phenomenon?
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Abstract In contrast to a recent observation, we notice that a particle in a box with
any cosine bottom does not show up the Klauder phenomenon when the perturbation
is gradually reduced to zero. Both perturbative and variational approaches have been
pursued. The case of a harmonic oscillator perturbed by a similar potential is addition-
ally studied. No peculiarity is observed anywhere in this case too. Possible reasons
behind the phenomenon are sought to rationalize our findings.
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1 Introduction

Recently [1], in course of extending a class of exactly solvable one-dimensional sys-
tems, attention has been focused on the energy spectra of a particle in a square well
potential with various sinusoidal bottoms as examples. Interestingly, pursuit of the
above study has revealed [1,2] that, under certain circumstances, usual results for
energy of the flat bottom case do not follow even if one allows the sinusoidal poten-
tials to vanish. Instead, states arrange themselves from some new lowest-energy eigen-
values. This is referred to as a type of Klauder phenomenon [3–6] (KP) which states
that some vestigial effects may be retained by quantum states for specific perturbations
even when the latter tend to vanish.
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To be specific, here the problem is concerned with a box potential in (0, L) whose
flat bottom at zero potential is modified by introducing any additional potential of
the form λcos (kπx/L), with k = 1, 2, 3, ... It has been claimed [1] that, except for
k = 1, results for the perturbed ground state energy do not reduce to that of the parent
box potential in the limit λ → 0. Always, one observes positive shifts in energies
of the states. In particular, the unperturbed box energies En (n = 1, 2, . . .) change to
(kπ/L)2 En . This feature is referred to as a kind of the KP.

An independent analysis of the above problem is imperative. This is because, if
the observations [1] are correct, it remains to be explained that the KP is indeed not
restricted to potentials that are singular at a finite point of space, as is commonly
believed [6]. Needless to mention, the cosine perturbation is bounded.

2 Perturbative analysis

We first apply the standard Rayleigh-Schrdinger perturbation theory [7–9] (RSPT) to
the above problem at two different values of k. The choices would suffice to establish
our contention. RSPT does not encounter any difficulty for any of the above selection,
and we obtain the following results for the ground state energy at the lowest orders of
perturbation, choosing m = 1/2 and h̄ = 1:

E1 (k = 1, λ) =
(π

L

)2 − λ2 L2

12π2 + O
(
λ4

)

E1 (k = 2, λ) =
(π

L

)2 − λ

2
− λ2 L2

32π2 + λ3 L4

512π4 + O
(
λ4

)
(1)

These results do reveal that the ground state energy of the box is regained under the
limit λ → 0 for each of the cases considered. There is no shift in the lowest energy
for k = 2. Moreover, the potential for k = 2 is symmetric about L/2 and hence has a
non-vanishing first order correction that the k = 1 perturbation does not have.

Perturbation series for the wave functions again bring to light the regular character
in the λ → 0 limit, as found above. The parent box states show up in both the cases
under scrutiny. This is evident from the expansions that we have worked out,

�1 (k = 1, λ) = �1 − λ
L2

6π2 �2 + λ2 L4

96π4 �3 + O
(
λ3

)

�1 (k = 2, λ) = �1 − λ
L2

16π2 �3 + λ2 L4

256π4

[
�3 + 1

3
�5

]
+ O
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λ3
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(2)

where states � j refer to the normalized parent box states, given by

� j =
√

2

L
sin

jπx

L
. (3)

The role of symmetry is once again notable. The state retains its symmetry around
L/2 only for the k = 2 case and this is clear from the second equation in (2) that
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shows mixing of specific states, in contrast to the situation for k = 1. Thus, RSPT
yields series for wave functions with no special trait for k = 2 except for symmetry.
No KP is apparent anywhere. We do not also find any reason for the appearance of an
extra node in the ground state at k = 2 (see Fig. 4 of Ref. 1).

It may be of interest to also know how the ground state energy depends on the
perturbation for large k. Actually, the large-k limit is particularly significant because
we expect on physical ground that too many oscillations of a cosine function over
a finite domain should average out to zero. Hence, one is inclined to think that the
correction would be smaller with rising k. Indeed, proceeding via a perturbative route,
one obtains the leading correction to the ground state energy as

− λ2 L2

2π2
(
k2 − 4

) (4)

for any k ≥ 3. This explicitly shows how quickly the correction becomes insignificant
at large k. No question of any huge shift of the lowest energy arises.

3 Variational analysis

To further substantiate our contention, one may like to adopt a variational analysis
following the Rayleigh-Ritz principle. This is an altogether independent approach
whereby one can check how the different ground-state energies of the perturbed
problem behave as the coupling constant is gradually reduced to zero. We employ
the box bases [10] and follow a linear variational strategy that is known to fur-
nish quite reliable results. Figure 1 shows how the near-exact lowest energies
behave at a sample value of L = 1. Here, for convenience, we have used a log-
arithmic scale for the abscissa. Note that they reach the same unperturbed value
(π2) quite smoothly in both the cases under scrutiny. This corroborates our find-
ings on the basis of RSPT. Thus, no special status can be ascribed to the case
k = 1.

The above variational procedure can be pushed to gain further advantage. Had
there been really a KP of the sort argued, one expects that the perturbation λcos (kπx)

would increase the ground state energy by a factor of (kπ)2 and this factor rises
sharply with k. On the other hand, as stated before, the potential λcos (kπx), for
any high value of k, would show only rapid oscillations about zero, the flat bottom
of the box. Effectively, then, this should render the ground state energy virtually
unchanged. Indeed, such a situation is observed in our calculations too. Table 1 shows
the behavior of the ground state energy for two very different values of the coupling
constant. One really notes that the parent box energy is virtually regained at large k
even when λ = 1. Smaller k values yield the limiting result at smaller λ, as expected.
Therefore, our contention that there should be no shift of the parent ground energy
is not only true in the λ → 0 limit for any k, it is true even at a finite λ for large
k as well! Since variational results always provide upper bounds to true energies,
and the concerned Hamiltonians are bounded from below, one can confide on these
results.
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Fig. 1 Plots of near-exact
energies for ground states in
potentials λcos (kπx/L) at
L = 1 within a square well in (0,
1). The bare box result is
approached in both the cases as
λ → 0
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Table 1 Behavior of the ground
state energy for the perturbation
λcos (kπx) on a particle in a box
in (0, 1) at large k

k λ = 1.0 λ = 0.0001

10 9.869077 9.869604401

20 9.869476 9.869604401

40 9.869572 9.869604401

60 9.869590 9.869604401

80 9.869596 9.869604401

100 9.869602 9.869604401

4 Harmonic oscillator with a cosine perturbation

Let us now briefly look at the problem of a harmonic oscillator perturbed by a similar
cosine potential λcos (kπx). We expect that results would not differ much from the
box case under any situation, be it k = 1 or k �= 1. Indeed, the perturbed ground state
energy of the Hamiltonian

H = − d2

dx2 + x2 + λ cos (kπx) (5)

shows the following variation with k as we proceed via RSPT:

E0 = 1 + λ exp
[
−k2π2/4

]
+ λ2 exp

[
−k2π2/2

]
ε (k) + O

(
λ3

)
. (6)

Result (6) is true for any k, and here the sum-over-states representation of the second
order energy correction term fortunately admits a closed form description. Thus, the
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Fig. 2 Plots of near-exact
energies for ground states in
potentials x2 + λcos (kπx/L).
The bare harmonic oscillator
result is approached in both the
cases as λ → 0
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factor ε(k) in (6) is expressible as

ε (k) = 1

2

[
γ + ln

k2π2

2
− Chi

(
k2π2

2

)]
, (7)

γ being the Euler constant. Using the definition of Chi(x)

Chi (x) = γ + ln x +
x∫

0

cosh t − 1

t
dt (8)

one can also express ε(k) as a series:

ε (k) = −1

2

∞∑
j=1

x2 j

(2 j)! (2 j)
, x = k2π2/2. (9)

The important point here is that the second order energy is exactly summable. One
can also see from (6) and (7) how rapidly the correction terms decay with k, as we
expected.

We have noted in Fig. 1 how lowest energies of box systems under the potential
λ cos (kπx) at the two chosen k-values behave with λ. The situation with the harmonic
oscillator case is similar. By following the same variational procedure as adopted ear-
lier, we have obtained Fig. 2 that shows the change of ground energy for the total
potential x2 +λ cos (kπx) as λ is varied. A smooth passage to the unperturbed energy
is quite apparent in both the chosen cases. No shift arises here either.
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5 Notes on the Klauder phenomenon

It now remains to explain why such a sinusoidal perturbation problem is an unlikely
candidate to show up the KP. This is most directly seen by casting the stationary
Schrodinger equation for the perturbed problem in the Riccati form that looks as

χ2
n + χ ′

n + En − V = 0 (10)

where χn = � ′
n/�n . Consider now a potential of the form

V = x2 + λ/xβ, β > 2, (11)

that has attracted considerable attention [6,11–13] in this context. The perturbing
potential here is singular at the origin. A look at the small-x behavior of χn on the
basis of (10) yields

χn =
√

λ

xβ/2 . (12)

This gives

lim
x→0

�n (λ) = exp

[
2
√

λ

2 − β
x1 − β/2

]
. (13)

For the unperturbed problem, the wave function goes to zero as x , but (13) tends to van-
ish much more steeply. Moreover, in the λ → 0 limit, the signature of perturbation is
more enduring in the wave function, because of the

√
λ dependence in (13), compared

to the potential (11). A similar analysis is true of the H atom problem perturbed by a
similar potential, as may be easily checked. In such cases, there is a qualitative change
in the nature of �n (λ)in the small-x region relative to the unperturbed wave function.
Thus we notice the major aspects of the KP. First, the domains of the perturbed and
unperturbed Hamiltonians (H and H0) are different. Hence, one experiences that

lim
λ→0

H (λ) �= H0. (14)

This additionally means, the perturbed spectra do not coincide with the unperturbed
one even in the limit of zero coupling strength. Our present problem has surfaced
precisely in such a context. Secondly, the point singularity in the perturbing potential
is essential to validate (14). If the unperturbed and perturbing potentials are singular
at the same point, the latter has to be more singular to show up KP. This is a necessary
condition, but not sufficient. For example, The H atom problem perturbed by a 1/r2

potential does not reveal any sort of KP. Thirdly, while KP ensures sustained memory
effects, the converse is not true in general. Indeed, perturbing potentials that are more
singular near the boundaries show a similar feature in the large-x regime. For example,
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with anharmonic oscillators of the form

V = x2 + λx2N [N = 2, 3, . . .] (15)

one obtains from (10)

lim
x→∞ χn = −√

λx N (16)

and hence

lim
x→∞ �n (λ) = exp

[
−

√
λ

N + 1
x N+1

]
. (17)

While any unperturbed oscillator state decays as exp
[−x2

]
, (17) shows that there is

a qualitative change now even when λ → 0. Also, �n (λ) has a softer λ-dependence
than V in (15).

6 Final remarks

A few more points need to be stressed. (i) The KP is usually discussed [6,11–13] in the
context of perturbing potentials like (11). This is because, here one often encounters
non-Taylor expansions [14] for energy. The reason can be traced back to the λ-depen-
dence of the dominant integrals in the Rayleigh quotient where (13) plays a decisive
role. More complicated are supersingular perturbations (β ≥ 3) for which even the
first order RSPT corrections to energy become infinite. Anharmonic oscillators of
the form (15) induce insignificant contribution to the energy integrals from (17) as
this region is far off from the potential minima. Therefore, these oscillators lack the
peculiarity for which the KP is mainly fascinating, viz. energy shifts [equivalently,
(14)] and the emergence of perturbation series with bizarre λ-dependence [6]. (ii) The
memory effects of some singular perturbations last longer in the wave functions than
in the potentials primarily because of (10). One sees clearly that V is directly linked
with χ2

n , and not �n . Hence, status of the coupling constant is different in the wave
function and in the Hamiltonian. This is precisely responsible for sustained memory.
In this respect, potentials (15) do show some promise in spite of the fact that they do
not satisfy the Klauder condition. (iii) Singular potentials like (11) pose considerable
challenge to variational calculations [15–18] as well owing to the peculiar form (13)
of the true wave function near the origin. The cosine perturbation under investigation
here does not possess any singularity. Hence, both the perturbative and variational
calculations are hassle-free. Therefore, KP does not show up here. (iv) Various sum
rules are nicely obtained from studies in RSPT [19,20]. For the Hamiltonian (5), our
results (6) and (7) do reveal the emergence of a class of new sum rules for the second
order energy that is valid for arbitrary k.
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